67 research outputs found

    Wavelet frame accelerated reduced vector machine for efficient image analysis

    Get PDF
    We propose a new approach for face and facial feature detection combined with the advantages of the Morphable Model. The presented method reduces the runtime complexity of a Support Vector Machine classifier and the new training algorithm is fast and simple. This is achieved by an Over-Complete Wavelet Transform that finds optimally sparse approximations of the Support Set Vectors. The wavelet-based approach provides an upper bound on the distance between the decision function of the Support Vector Machine and our classifier. The obtained classifier is fast since the used Haar wavelet approximations of the Support Set Vectors allow efficient Integral Image-based kernel evaluations. This provides a set of double-cascaded classifiers of increasing accuracy for an early rejection. The algorithm yields an excellent runtime performance that is achieved by hierarchically discriminating with respect to the number and approximation accuracy of incorporated Reduced Set Vectors. The proposed algorithm is applied to the problem of face and facial feature detection, but it can also be used for other image-based classifications. The algorithm presented, provides a 530-fold speed-up over the Support Vector Machine, enabling face detection at more than 25 fps on a standard PC. Summarizing, we propose very fast and efficient to train classifiers that improve the detection performance by involving the advantages of the Morphable Model. On one hand to improve the fitting algorithm of the Morphable Model by automatic anchor point detection and on the other hand to use the Morphable Model for improving the training by synthetic data sets and to reduced the False Acceptance Rate

    3D Face Tracking and Texture Fusion in the Wild

    Full text link
    We present a fully automatic approach to real-time 3D face reconstruction from monocular in-the-wild videos. With the use of a cascaded-regressor based face tracking and a 3D Morphable Face Model shape fitting, we obtain a semi-dense 3D face shape. We further use the texture information from multiple frames to build a holistic 3D face representation from the video frames. Our system is able to capture facial expressions and does not require any person-specific training. We demonstrate the robustness of our approach on the challenging 300 Videos in the Wild (300-VW) dataset. Our real-time fitting framework is available as an open source library at http://4dface.org

    SOM-VAE: Interpretable Discrete Representation Learning on Time Series

    Full text link
    High-dimensional time series are common in many domains. Since human cognition is not optimized to work well in high-dimensional spaces, these areas could benefit from interpretable low-dimensional representations. However, most representation learning algorithms for time series data are difficult to interpret. This is due to non-intuitive mappings from data features to salient properties of the representation and non-smoothness over time. To address this problem, we propose a new representation learning framework building on ideas from interpretable discrete dimensionality reduction and deep generative modeling. This framework allows us to learn discrete representations of time series, which give rise to smooth and interpretable embeddings with superior clustering performance. We introduce a new way to overcome the non-differentiability in discrete representation learning and present a gradient-based version of the traditional self-organizing map algorithm that is more performant than the original. Furthermore, to allow for a probabilistic interpretation of our method, we integrate a Markov model in the representation space. This model uncovers the temporal transition structure, improves clustering performance even further and provides additional explanatory insights as well as a natural representation of uncertainty. We evaluate our model in terms of clustering performance and interpretability on static (Fashion-)MNIST data, a time series of linearly interpolated (Fashion-)MNIST images, a chaotic Lorenz attractor system with two macro states, as well as on a challenging real world medical time series application on the eICU data set. Our learned representations compare favorably with competitor methods and facilitate downstream tasks on the real world data.Comment: Accepted for publication at the Seventh International Conference on Learning Representations (ICLR 2019

    Fitting 3D Morphable Models using Local Features

    Get PDF
    In this paper, we propose a novel fitting method that uses local image features to fit a 3D Morphable Model to 2D images. To overcome the obstacle of optimising a cost function that contains a non-differentiable feature extraction operator, we use a learning-based cascaded regression method that learns the gradient direction from data. The method allows to simultaneously solve for shape and pose parameters. Our method is thoroughly evaluated on Morphable Model generated data and first results on real data are presented. Compared to traditional fitting methods, which use simple raw features like pixel colour or edge maps, local features have been shown to be much more robust against variations in imaging conditions. Our approach is unique in that we are the first to use local features to fit a Morphable Model. Because of the speed of our method, it is applicable for realtime applications. Our cascaded regression framework is available as an open source library (https://github.com/patrikhuber).Comment: Submitted to ICIP 2015; 4 pages, 4 figure

    Simulating Temporally and Spatially Correlated Wind Speed Time Series by Spectral Representation Method

    Get PDF
    In this paper, it aims to model wind speed time series at multiple sites. The five-parameter Johnson distribution is deployed to relate the wind speed at each site to a Gaussian time series, and the resultant m-dimensional Gaussian stochastic vector process Z(t) is employed to model the temporal-spatial correlation of wind speeds at m different sites. In general, it is computationally tedious to obtain the autocorrelation functions (ACFs) and cross-correlation functions (CCFs) of Z(t), which are different to those of wind speed times series. In order to circumvent this correlation distortion problem, the rank ACF and rank CCF are introduced to characterize the temporal-spatial correlation of wind speeds, whereby the ACFs and CCFs of Z(t) can be analytically obtained. Then, Fourier transformation is implemented to establish the cross-spectral density matrix of Z(t), and an analytical approach is proposed to generate samples of wind speeds at m different sites. Finally, simulation experiments are performed to check the proposed methods, and the results verify that the five-parameter Johnson distribution can accurately match distribution functions of wind speeds, and the spectral representation method can well reproduce the temporal-spatial correlation of wind speeds

    A Multiresolution 3D Morphable Face Model and Fitting Framework

    Get PDF
    3D Morphable Face Models are a powerful tool in computer vision. They consists of a PCA model of face shape and colour information and allow to reconstruct a 3D face from a single 2D image. 3D Morphable Face Models are used for 3D head pose estimation, face analysis, face recognition, and, more recently, facial landmark detection and tracking. However, they are not as widely used as 2D methods - the process of building and using a 3D model is much more involved. In this paper, we present the Surrey Face Model, a multi-resolution 3D Morphable Model that we make available to the public for non-commercial purposes. The model contains different mesh resolution levels and landmark point annotations as well as metadata for texture remapping. Accompanying the model is a lightweight open-source C++ library designed with simplicity and ease of integration as its foremost goals. In addition to basic functionality, it contains pose estimation and face frontalisation algorithms. With the tools presented in this paper, we aim to close two gaps. First, by offering different model resolution levels and fast fitting functionality, we enable the use of a 3D Morphable Model in time-critical applications like tracking. Second, the software library makes it easy for the community to adopt the 3D Morphable Face Model in their research, and it offers a public place for collaboration
    • …
    corecore